AN ARCHITECTURE TO SUPPORT AUTONOMY, TELEOPERATION, AND SHARED CONTROL

Dr. Ron Lumia, John C. Fiala, Albert J. Wavering

Robot Systems Division
National Bureau of Standards, Gaithersburg, Maryland 20899

bstract

Described is an approach to the functional architecture of a
telerobot so that autonomy, teleoperation and shared control can
all be supported. The system is hierarchically organized where
task decompositon, world modeling, and sensory processing are
explicitly represented. Goals at ‘each level of the hierarchy are
decomposed spatially and temporally imto simpler tasks which
become goals for lower levels. The spatial decomposition facili-
tates control and coordination of multi-arm robots. A description
of the lowest level, the Servo Level, is presented, along with the
operator contro} interface at that level.

1, Introduction

A functonal srchitecture for telerobot control systems is
described by Albus, et. al, in [1]. While other recent robot con-
trol system descriptions {2,3] have dealt primarily with hardware
and operating system structures, the architecture described in [1]
emphasizes a modular goftware structure for all levels of control
in an autonomous agent. In additon, the control system design
incorporates teleoperation at several levels of control.

The telerobot architecture consists of four control levels, Task,
Elemental-Move, Primitive and Servo, arranged hierachically as
described in [1). The Servo Level is at the bottom of the hierar-
chy and is directly responsible for computing the control outputs
to the actuators. The basic structure of the Servo Level for a
device, ¢.g. & manipulator or articulated end-effector, is shown in
Figure 1. The device control level is composed of three main com-
ponents, Sensory Processing (SP), World Modeling (WM), and
Task Decomposition (TD). Generally, there is a Servo Level like
this for each controlied device of the telerobot [1,5]). To simplify
the discussion, the term selerobot will refer in the foliowing only
to 2 manipulator of the telerobot.

Sensory World Task
Processing Modeling Decom-
position

t i
Device Device
Sensors

Figure 1. Device Conwo! Architecture.

The Sensory Processing component of the contol system is
responsible for reading system sensors, and then filtering and
integrating this information over space and time. The Task
Decomposition component computes the required control outputs.
World Modeling obtains new information about the environment
from Sensory Processing and provides the latest estimates to
Task Decomposition. One of the primary activities of World Mod-
cling is to maintain the global data system in which is stored the

system's best estimate of the state of the world.

It is desired that 8 human operator be interfaced to the Servo
Level of the telerobot. This interface should allow three principal
control modes, awonomous control, teleoperation, and shared con-
trol. Awonomous control refers 10 operation without human inter-
vention at the Servo Level. In this mode, the Servo Level of the
telerobot receives commands only from the Primitive Leve] of the
control hierarchy. Teleoperation refers to control of the telerobot
directly by the operator, as in bilateral master-siave control. The
third mode, shared control, is a combination of the purely
autonomous and teleoperated modes. In this mode, the control of
the telerobot is determined from a combination of Primitive and
operator inputs.

The purpose of this paper is to describe in detail the inter-
faces and functonal requirements for achieving these three con-
trol modes of a manipulator at the Servo Level. The control struc-
ture for the seleoperarion device, i.e. joystick or master arm, con-
troller is discussed in Section 2. Section 3 describes some
details of the telerobot control structure. The interfaces to the
telerobot Servo Level are examined in dewil in Sections 4 and 5.
Finally, Section 6 describes the functionality of the telerobot Ser-
vo Level in achieving the three control modes.

) tion Devi hitectur

In the general case, a teleoperation device may be actively
controlied. This is usually done to provide what has come to be
called force feedback to the operator. Although force may not be
the feedback variable, the idea is that active control of the teleop-
eration device based on the state of the telerobot can provide the
operator with more information on the progress of the telemanipu-
Iation task. Many devices, such as simple joysticks, are not
actively controlled and provide mo feedback to the operator.
Devices like JPL's Force-Reflecting Hand Controller {4,6) are
specially designed to provide operator feedback. Such devices
require active control. Thus, the general architecture for a teleop-
eration device is the same as that of a control systtm as
described in [1). This type of architecture is depicted in Figure 1.

With this control structure, Sensory Processing routines read
the device sensors and Task Decomposition computes the control
outputs to the device. (If the device is not actively controlled, ie.
no force feedback, then the Task Decomposition module is obvi-
ously a "null" module.) World Modeling updates the data system
as to the current state of the teleoperation device based on data
collected by Sensory Processing. Data in the global data system
is available to all modules at all levels of the control system.
Thus, the data system provides 8 communication mechanism for
widely separated components of the control system that does not
interfere with the system’s overall modilarity. In pamicular, this
mechanism serves to connect the Servo Level of the telerobot
with the teleoperation device control level.

Figure 2 depicts the interaction between the telerobot Servo
Level and the teleoperation device conwol system. As shown in
the figure, the teleoperation device control system updates the
global data system as to the current state of the teleoperation
device. This may include the teleoperation device’s position,
velocity and sensed forces. When in teleoperation mode it is

Telerobot-to-Teleoperator Data
N~
Teleoperator-to-Telerobot Data b,
™ :
Global Teleoperator- sp WM
Daa Telerobot-10- to-Telerobot Data
Teleoperator
System Data 1
- sp WM ™ | Y Teleoperation _Device
’ ‘ ----- N
; — H \
Device Device
: Sensors Control
: 4 Telerobot Servo Level
\-/ Telerobot Telerobot
Sensors Conrtrol

Figure 2. Teleoperation Device/Telerobot Logical Architecture.

desired that the telerobot track the teleoperation device state.
Thus, the telerobot World Modeling module will obuain the state
of the teleoperation device from the global data system and pro-
vide this information to Task Decomposition, where it is used in
computing the control outputs for the manipulator. Likewise, the
state of the telerobot can be obtained from the data system by the
teleoperation device World Modeling module and used to compute
the force feedback to the teleoperator.

3. Telerobot Servo Level Architecture

As with the teleoperation device, the telerobot Servo Level
has the general structure described in Section 1. However, addi-
tional structure can be described within the Sensory Processing,
World Modeling, and Task Decomposition components. To limit
the discussion, the following will emphasize the element of Task
Decomposition involved in allowing both teleoperation and auton-
omy, the Job Assignment module.

Figure 3 shows the gross structure of the telerobot Servo Lev-
el Task Decomposition module. There are three modules. The
Execution module directly computes the motor command for the
manipulator. To do this, it receives periodic attractor points for
the manipulator from the Planning module and model-based
terms, (i.e. Jacobians, inertias, eic.,) from World Modeling. This
is described in some detail in [5]. The Planning module feeds the
periodic data points to the Execution module, performing some
simple interpolation on the data it receives from Job Assignment if
necessary. The Job Assignment module receives the commands
from Primitive and the teleoperator, and provides a coordinated
output command to the Planning module.

The Primitive Level of the control hierarchy is responsible for
generating the time sequence of Servo Level commands needed to
produce a dynamic majectory. Each command to Servo is basical-
Iy one point of a position/force trajectory. By sending a sequence
of such points Primitive can move the manipulator along a desired
path. The Servo Level servos to each goal point using an algo-
rithm specified by Primitive.

The data contained in the Job Assignment module interfaces
are shown in the figure. The Primitive/Servo interface contains
data passed between the Execution module at Primtive and the
Job Assignmem module at the Servo Level. The operator control
interface contains the teleoperator-io-wierobot data as depicted
in Figure 2. Detailed explanations of the data are given below.

4, Primitive/Servo Interface
The parameter C, is & coordinate system specifier. C, indi-

cates the coordinate system in which the position and force com-
mand vectors are expressed. This is the servo coordinate sys-
tem. The choices for Cz include joint coordinates, (Cartesian)

world coordinates, (Cartesian) end-effector coordinates.

The vectors z3, 23 Z3. Z4. specify the desired position,
velocity, acceleraion and jerk for the manipulator each control
cycle. The vector f; specifies the desired forces for the manipula-

CZ
(]
Interface K's Primitive/Servo
S,§ Interface
Co Servo_algorithm
Ro Stams
K's -
S,§ 1
Op_algarithm !
Op_smatus Job Assignment
2, 2, JA(D)
2. H
World o fo i £
Modeling Z
Planning g'
PL(Ls) £
o
L
3 F
Execution
EX(1,s)

\
motor command (u)

Figure 3. Interfaces to Telerobot Servo Level.

tor. The vector i’d specifies the desired force rates. All of these
vectors are specified with respect 10 the coordinate system of C,.

For example, if C, indicates joint coordinates, then the {4 and fd

vectors are vectors of joint torques and torque rates, and the zg,

z4 and Z4, arc joint positions, velocities, accelerations. The set
of six vectors (zy, 34, I3 Z4, fy f’d) forms the atractor set,
(desired state,) of the manipulator for each contro! cycie.

The gain terms (K’s) are the gain coefficients which multiply
the error vectors in the conmol equations. The K's determine the
impedance of the manipulator [S). The parameters S and S” are
sclection matrices used to select the coordinate axes to be force
controlled and position controlled [5].

The final element of the Servo command input is the
"Servo_algorithm" selecior. This parameter indicates what algo-
rithm is to be used for approaching the attractor set during subse-
quent control cycles. The "Swatus” parameter indicates the status
of the Servo Level control and is passed back © Primitive from
the Job Assignment module.

5. Operator Control Interface
The coordinate system specification from the operator, C,

indicates the coordinates in which the operator commands are to
be interpreted. The possible values of C, take the same form as

those of C, described for the Primitive/Servo interface.

The acmal command positions, velocities, accelerations, and
forces, z, z,, %,. f, from the operator are generated from the
inputs of the teleoperation device. The possible devices from
which operator input could be taken include joysticks, control pen-
dants of various forms, and master arms.

The redundancy resolution parameter R specifies how redun-

dancy is to be resolved for the operator command. This is proba-
bly only required when doing shared control, i.e. the operator coor-
dinates C, are underspecified with respect to the sutonomous

coordingtes C,. Normally, the coordinates of the command input

to Servo are the coordinates of the servo control algorithm. In
this case, any redundancy resolution needed to transform the com-
mand into joint space is incorporated in the dynamics of the con-
trol algorithm. The Servo Level does not make a transformation
of coordinates from command to servo coordinates, because the
command is in the desired servo coordinstes. However, during
shared control, a transformation may be required to bring the
Primitive input and the operator input into the same coordinate
system. This may require redundancy resolution independent of
the servo algorithm.

The servo gains (K's) and selection matrices (S,5°) are input
from the operator interface when the command 10 Servo is taken
from the operator. These parameters are of exactly the same form
as the corresponding parameters in the Primitive to Servo inter-
face. During shared control, the Job Assignment module must
chose one set of these parameters based on the Op_algorithm.

The overall control of the Servo Level is achieved by the
parameter Op_algorithm. The Op_algorithm parameter selects
between the autonomous, teleoperation, and shared control
modes. The parameter Op_status is analogous to the Staws
returned to Primitive by the Job Assignment module. The
Op_status informs the operator control of the current status of the
Servo Level.

The Job Assignment module receives from World Modeling
the command data from the operator’s input device. These vec-
tors give the desired position, velocity, acceleradon, and force for
the manipulator when the Servo Level is in teleoperation mode.
Note that these vectors are with respect to the coordinates
selected by C for pure tcleoperation, and with respect to the

coordinates selected by C, for shared control. Thus, World Mod-
eling may have to make the transformation from C, to C,.)

To clarify the meaning of this general interface it is helpful to
examine a specific example. For the purpose of discussion con-
sider teleoperation devices as divided into two classes. The first
class consists of devices which are kinematically similar to the
telerobot or otherwise provide state information in the joint-
space of the telerobot. These are the joint-space teleoperarion
devices. They include identical master-slave arm configurations
and the so-called mini-master devices. Joysticks can operate in
Joint coordinates as well, albeit less conveniently. The second
class of devices consists of all devices providing data in coordi-
nate systems linked to some Cartesian frame of reference. These
devices are the Cartesian teleoperation devices, which include
JPL’s Force-Reflecting Hand Controller and Cartesian joysticks
such as DFVLR's sensor ball device [7]. Tables 1 and 2 give
the information in the data paths of Figure 2 as required for Carte-
sian teleoperation devices performing pure teleoperaton.

Table 1 shows the information in the teleoperator-to-tele-

robot data path for Cartesian teleoperation. The inputs z,, Zz,

and f) are all derived from the movement of the joystick or hand-

controller part of the teleoperation input. The remaining parame-
ters of the interface are obtained from the operator either through
switches or a terminal.

The number of data items that need to be passed for each ele-
ment of the interface is also given in the table. Each item is a 32-
bit data word, usually in floating point format. For example, the
Cartesian velocity vectors in the interface have the form

[V Vyp Vo GO, Oy, 0),

where v, \ and v, are the linear velocity components of the

end-effector motion with respect to the x, y, and z axes of the

control coordinates, and @, Oy and @, are the angular velocity

components about the same axes. Thus, velocity requires six
data words. The six-dimensional Cartesian force vectors are
defined analogously.

The definition of the position vectors is not as straight-for-
ward. To avoid the ambiguities of using only three orientation
parameters, the orientation part of the position vector is repre-
sented by an equivalent angle-axis form [8). Thus, the form of
the position vector is

[x.y,%6,0,, 8.1,
where x, y, and z give the position with respect to the origin of
the control coordinates, and the orientation is given by a rotation
@ about the unit vector n in the same coordinate system.
The parameter C, specifies the coordinate system in which
the control is to be executed. The general form of C,, is (coord.
5YS., Tw' 'I‘c }. Here, "coord. sys." is one data word and indi-

cates the selection of "world" or "end-effector” coordinates.
World coordinates mean that the command vectors give the posi-
tion of the end-effector with respect to a coordinate system fixed
a1 the manipulator base. End-effector coordinates mean that the

Table 1. Cartesian Teleoperator-to-Telerobot Data.

Data Nature of Data #items
z, End effector positions from device 7

Z, End effector velocities from device 6

fo End effector forces from device 6
Op_algorithm Control mode from operator 1
Co " Coordinate system specifier 25
Kpf, K, Kis "~ Control gains for telerobot 36
S, 8 Control selection matrices 36

Table 2, Cantesian Telerobot-to-Teleoperator Data.

Data Natyre of Data itens
z Telerobot end effector positions 7

z Telerobot end effector velocities 6

f Telerobot end effector forces 6
Status Status of telerobot control 1

6 Telerobot joint positions # joints

operator sees the teleoperation device movements interpreted
with respect to a coordinate system fixed at the end-effector.
Obviously, the Cartesian position vectors are not used when in
end-effector coordinates. The transformations T, and T allow

the operator to position the coordinate frames fixed at the base
and at the end-effector arbitrarily, as depicted in Figure 4. Each
transformation is a rotation matix and a translation vector, requir-
ing twelve data words. Thus, the C parameter lets the operator

move in any desired Canesian system, (and even Cylindrical or
other coordinates are possible.) Any scaling or indexing of the
teleoperation commands performed for the convenience of the
operator should be handled in the World Modeling module of the
teleoperation device. Thus, the teleoperation commands are
ready to be used in the control when they enter the global data
systemn.

The control gain matrices are six-by-six diagonal matrices
and thus require six data items per matrix. The use of these six
gain terms is described in [5]. The selection matrices take the
most general form as task specification matrices in [9). Each
matrix may have up to eighteen non-zero elements.

Figure 4. Cartesian Coordinate System Relationships.

The information returned to the teleoperation device conwoller
along the telerobt-to-teleoperator data path is given in Table 2.
The telerobot conmoller returns a Status word and the state vec-
tors z, z, and f. These Canesian vectors give the currem state of
the telerobot in coordinates C,. The vector f represents World

Modeling’s "best guess” of the forces in the these coordinates.
This information may represent a fusion from a number of sensors
including wrist force/torque sensors, joint torque sensors, and
tactile force sensors.

One important consideration regarding Cartesian teleopera-
tion is the handling of singulariies. When the servo algorithm
uses Canesian inputs, motion along a nearly singular direction
can produce a large joint space output. During autonomous oper-
ation it is the Primitive Level’s job to insure that input commands
do not exercise a singularity. This same criterion applies 10 the
inputs from a Canesian teleoperation device — the inputs to Ser-
vo should not ask for motions along singular directions.

Note that this does not mean that the teleoperator can not
move the telerobot into a singular region. However, in a singular
region, the operator's command input should be restricted to
movement which does not exercise the singularity. This means
that the Cartesian input is scaled according to the manipulability
measure, and, at the point of singularity, reduced to the remaining
degrees of freedom. For a Canesian teleoperation device with
force feedback this means that the manipulability ellipsoid [10]
should be reflected back to the operator such that the operator
senses the mechanism’s singular regions. In order for the teleop-
eration device to specify the correct inputs it must have a local
model of the telerobot. The correct inputs can be determined by
using the fedback joint positions 6 of the telerobot and the local
telerobot model. -

The data rates required to support teleoperation using the
example interface is large. The smallest reasonable subset of
this interface would be {z_, Op_algorithm, z, Status). If this data

was 10 be exchanged every 20 ms., a scrial rate of at least 25.6
Kbaud would be required. For the general teleoperation case,
114 32-bit words passed in 10 ms., a serial data rate of approxi-
mately 0.5 Mbaud would be required. Note that all values need
pot be passed every cycle. For instance, the K’'s, S's,
Op_algorithm, and C, parameters will only change occasionally,
and thus can be passed less frequently than the other data. For
this reason, these parameters can appear as optiona! parameters
at the end of the communication buffer. They would only be trans-
ferred when the values change. Still, 32-bit parallel data trans-
fers may be needed for the teleoperation interface.

§. Autonomous, Teleoperated, and Shared Control Modes

It is the task of the Job Assignment module to determine
whether Servo will execute from the autonomous commands
(Primitive), or from operator commands given through some input
device such as a joystick or master arm. In addition, the Job
Assignment module must be able to coordinate operator and
Primitive commands for shared control operation.

The Job Assignment module, upon receiving a new command,
first examines the Op_algorithm. This parameter indicates the

* desired control mode selected by the operator. The control mode

could be autonomous, teleoperated, or shared control.

For sutonomous control mode, the Job Assignment module
takes the input strictly from the Primitive/Servo interface. No
contol data is obtained from the operator. Thus, as stated previ-
ously, the control algorithm is given by Servo_algorithm. Also, in
the autonomous mode, no data is obtained from world modeling 1o

modify the Primitive command vectors. Operation in this mode is
described in [S].

The Job Assignment module takes the Op_algorithm as the
control algorithm in the teleoperated control mode. In this mode,
control data comes from the operator control interface as depicted
in Figure 3. For Caresian teleoperation, using the data of Tables
1 and 2, a control of the form

Weierobot = 1®) [Kifzo- 2)+ K(2-2))
could be computed in the telerobot Servo Level Execution mod-

ule. (The J'(B) mamix is the manipulator Jacobian; see [8].) At
the same time a force feedback control could be computed for the
teleoperation device by the teleoperaton device Execution mod-
ule. The technique given in [4] for the Force-Reflecting Hand
Controller is

Ygevice = K 30) K, mDbnd(z - 7)) - Koz, +f)

where 2z, is the position of teleoperation device in C, and the

function Dbnd() is a deadband functon which eliminates correc-
tons for position errors of small magnitude. The six-dimensional
error term (z - 2.} can be computed from the seven-dimensional

position form [9].

A number of different controls are possible for the teleopera-
tion mode as described in [5], including unilateral master-slave
control, unilateral joystick conwol, and generalized bilateral con-
trol {4,6].

The Op_algorithm could also indicate that some kind of shared
control is to be executed. Although the term "shared control” has
begun to appear frequenty in the literature, it is defined here in
werms of the structure of this control system. Shared control
occurs at the Servo Level when both the Primitive command and
the operator contribute to the final control output from the Job
Assignment module. For example, suppose the operator desires
that the telerobot’s position be fixed in the x- and y-directions of
a world coordinate system, while the operator moves the manipu-
lator along the z-axis. This would not required "shared” control
since the teleoperation device controller need only fix the x and y
values of z of the teleoperator-to-tele-robot input to achieve

this. Although the telerobot Servo Level is handling part of the
control, it is not doing any more than is required for generalized
bilateral control anyway. This differs somewhat from the descrip-
tion of shared control, termed "interactive manual-automatic con-
wol”, in [6].

An example of shared control is when the manipulator is com-
manded by Primitive to track an object or follow a predefined tra-
jectory and the operator is allowed to modify the trajectory at the
Servo Level. Such a system is described in [7]. In this mode, the
control algorithm would be determined from both Op_algorithm
and Servo_algorithm. The servo gains and selection matrices will
be chosen from one of the two interfaces. Also, the final attractor
set for the manipulator would be a combination of the attactors
specified by World Modeling (from the operator) and Primitve. In
this mode, the operator command vectors can represent modifica-
tions to be made to the autonomous command vectors coming
from Primitive. For example, in a rate control mode, the final rate

z, for the manipulator could be computed as
i. = Zd+ Z

s o’

by the Job Assignment module. Here, z, is a modification of the
Primitive rate command by the operator.

Another type of shared control be achieved by choosing ele-
ments from both Primitive and the operator to create a new attrac-
tor set. For instance, in a hybrid position/force control scheme,
the commands computed by Primitive could be used for the force-
controlled subspace, and the position-controlled subspace could
be given by the operator’s input.

7. Conclusion

The architecture presented in [1] provides a complete, modu-
lar structure for an advanced telerobot control system. This same
structure is applicable to other major systems to be used with the
telerobot. One example is the control/sensor system of the tele-
operation device(s), as described in this paper. Given these
generic control structures it is possible to define interfaces that
allow autonomous, teleoperated, and shared control modes all in
the same system. This document has presented, as an example,
a basic teleoperation interface for use with Cartesian teleopera-
tion devices. Such interfaces support numerous algorithms for
telerobot control.

8. References

[1] Albus, J. S, McCain, H. G., Lumia, R., NASA/NBS Standard

Reference Model Telerobot Control System Architecture
(NASREM), NBS Technical Note 1235, July, 1987.

{2) Bejczy, A. K. Szakaly, Z., "Universal Computer Control
System (UCCS) for Space Telerobots,” IEEE Conf. Robotics
& Automation, Raleigh, N. C,, March, 1987.

[3] Kazanzides, P., Wasti, H., Wolovich, W. A., "A Multpro-
cessor System for Real-time Robotic Control: Design and
Applications,” IEEE Conf. Robotics & Automation, Raleigh,

N. C., March, 1987.

{4] Handlykken, M., Tumner, T., "Control System Analysis and
Synthesis for a Six Degree-of-Freedorn Universal Force-
Reflecting Hand Controller,” Nineteenth IEEE Conf. Deci-
sion & Control, Albuquerque, N.M., Dec., 1980.

{5) Fiala, J. C,, Lumia, R., Albus, J. S., "Servo Level Algorithms
for the NASREM Telerobot Control System Architecture,”

Proc. of SPIE Vol 851 - Space Station Automation III, Cam-
bridge, Mass., Nov., 1987.

[6] Bejczy, A. K, "Robots as Man-Extension Systems in

Space,” JFAC Ninth Triennial World Congress, Budapest,
Hungary, 1984.

[7) Hirzinger, G., "Robot Learning and Teach-In Based on Sen-
sory Feedback,” Third Symp. Robotics Research, Gouvieux,
France, 1985.

{8) Craig, J. J., Introduction to Robotics; Mechanics and Control,
Addison-Wesley, Reading, Mass., 1986, p. 46.

[9] Khatib, O, "A Unified Approach for Motion and Force Con-
trol of Robot Manipulators: The Operational Space Formu-
lation,” IEEE Jour. Robotics & Automation, Vol. RA-3, No.
1, Feb,, 1987. :

(10] Yoshikawa, T., "Manipulability and Redundancy Contro! of
Robotic Mechanisms,” IEEE Conf. Robotics & Automation,
St. Louis, March, 1985.

